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MaRiNe cONseRVatiON

Global tracking of marine 
megafauna space use reveals how 
to achieve conservation targets                        

The recent Kunming- Montreal Global Biodiversity Framework 
(GBF) sets ambitious goals but no clear pathway for how zero 
loss of important biodiversity areas and halting human- induced 
extinction of threatened species will be achieved. We assembled 
a multi- taxa tracking dataset (11 million geopositions from 
15,845 tracked individuals across 121 species) to provide a 
global assessment of space use of highly mobile marine 
megafauna, showing that 63% of the area that they  
cover is used 80% of the time as important migratory corridors 
or residence areas. The GBF 30% threshold (Target 3) will be 
insufficient for marine megafauna’s effective conservation, 
leaving important areas exposed to major anthropogenic 
threats. Coupling area protection with mitigation strategies 
(e.g., fishing regulation, wildlife- traffic separation) will be 
essential to reach international goals and conserve biodiversity.

Together with the recently finalized United Nations High Seas Treaty 
(1, 2), the Kunming- Montreal Global Biodiversity Framework (GBF) 
(3, 4) seeks to protect, conserve, and manage at least 30% of oceans. 
This is a necessary step to support halting the loss of marine biodiver-
sity (GBF Target 3), which has been particularly acute for large marine 
species (5–7). These include several iconic large marine vertebrates that 
have been driven to extinction by overexploitation [e.g., the Steller’s 
sea cow (Hydrodamalis gigas), the great auk (Pinguinus impennis), 
and the Japanese sea lion (Zalophus japonicus)], and many others cur-
rently showing precipitous declines in abundance [e.g., the hawksbill 
turtle (Eretmochelys imbricata), shortfin mako shark (Isurus oxyrinchus), 
and North Atlantic right whale (Eubalaena glacialis)]. These mobile 
and highly migratory marine vertebrates, hereafter marine megafauna, 
can act as ecosystem and climate sentinels (8) (being good surrogates 
for other biodiversity) and hold key functional roles that assist in 
structuring and maintaining ecosystems (9–11). However, close to a 
third of species across marine megafauna taxa are now threatened with 
extinction (5, 12–18).

Certain characteristics of marine megafauna, such as K- selected 
life- history traits, place them at priority for systematic conservation 
planning [i.e., high vulnerability and high irreplaceability (19)] and 
make the “effective conservation” outlined in GBF Target 3 urgently 
needed. Many also migrate thousands of kilometers crossing multiple 
exclusive economic zones (EEZs) and areas beyond national jurisdic-
tions (ABNJs), presenting a challenge for area- based conservation ap-
proaches (20). Notably, such approaches are traditionally based on 
known geographical ranges reflecting historically known bound-
aries (18) or static maps of occurrence (21). However, devising a man-
agement plan that effectively conserves migratory species within 
Ecologically and Biologically Significant Areas (22) requires an under-
standing of how the species use space. Particularly, detecting impor-
tant marine megafauna areas used for key life- history events, such as 
breeding or feeding and migratory behaviors, henceforth IMMegAs 
[to use a term similar to those recognized by the International Union 
for the Conservation of Nature (IUCN), such as IMMA (Important 
Marine Mammal Areas) or ISRA (Important Shark and Ray Areas)] is 
only tractable using telemetry data (20, 23–27). Despite the challenges 

associated with collating such data at global scale (28), the detection 
of global IMMegAs is essential to understanding marine megafauna 
conservation needs to inform global treaties and should therefore be 
prioritized for creating the network of marine protected areas (MPAs) 
aimed by GBF (i.e., the planned increase to 30% of area protection).

Using telemetry data to understand global space use by 
marine megafauna
We assembled a telemetry dataset unparalleled in size and scope [as 
the result of a global effort initiated by the MegaMove project (29)] by 
accepting voluntary contributions of tracking data of highly mobile 
marine vertebrates—here referred to as marine megafauna, despite 
some (particularly flying birds) being under the 45- kg threshold (10). 
Our dataset encompasses more than three decades of tracked move-
ments (1985 to 2018) from 15,845 individuals across 121 species, which 
after curation (30), resulted in 12,794 individual tracks from 111 spe-
cies, covering 71.7% of the area of the world’s oceans (Fig. 1). Species 
include flying birds (hereafter birds), cetaceans (mostly whales but 
also dolphins), fishes (mostly sharks), penguins, polar bears (Ursus 
maritimus), seals, sirenians (i.e., dugongs and manatees), and turtles. 
See fig. S1 for latitudinal and longitudinal coverage of the dataset, and 
tables S1 to S3, respectively, for lists of species tracked, tracking data 
details, and species- specific information. According to global assess-
ments by the IUCN (18), of the 111 species considered, ~70% have de-
creasing (54 species) or unknown (23 species) population trends, and 
more than 50% (58 species) have a threatened conservation status of 
Critically Endangered (CR), Endangered (EN), or Vulnerable (VU) 
(table S4). Five main regions exhibited the highest effective number 
of tracked species [as calculated based on the Shannon entropy (31)]: 
the central Indian Ocean, northeast Pacific, Atlantic northeast and 
northwest, and around Mozambique and South Africa. A few other 
locations empirically known as having high animal occurrence also 
showed a high number of species (fig. S2). Areas where more tracking 
data could be made available include southeast Asia, north of Europe 
(e.g., Spitsbergen and Greenland), Australia, central Pacific Ocean, and 
western Africa (particularly the southwest Atlantic and Gulf of Guinea) 
(Fig. 1 and fig. S2).

Using properties of the movement detected in the tracking dataset, 
including speed, direction, and movement coherence (30) (figs. S12 
and S13), we identified IMMegAs based on key behaviors reflected in 
residency or migratory (including nomadic or dispersive) behavior. 
We did this by using an approach (30) able to evaluate these behaviors 
collectively across multiple tracks without relying on interpolation 
across highly variable sampling intervals. This is not possible with the 
traditionally used state- space models that are typically designed to 
detect behavioral states on single tracks after interpolating position 
estimates [e.g., (32)].

We then assessed how much of the IMMegAs occurred within exist-
ing MPAs (including marine parks) (33) or exclusive economic zones 
[EEZs; (34)] (shown in fig. S3). We used an optimization algorithm 
to estimate what configuration of the area covered by our tracking 
dataset would yield the best selection for setting protected areas for 
marine megafauna, giving priority to grid cells that are used for both 
residency and migratory behaviors across multiple taxa (30). For 
comparison, we repeated this procedure after developing statistical 
models to predict areas likely to be used for residency or migration 
for each taxon within the areas covered by our tracking dataset (30). 
For data used as input for the models, see Table 2. After this modeling 
procedure, we considered the priority grid cells as those resulting in 
highest probabilities (i.e., >0.5 and closest to 1) of being an important 
area across all taxa.

Finally, we assessed the extent to which the GBF’s planned increase 
to 30% in area protection could assist with reducing impacts from 
marine megafauna’s exposure to anthropogenic threats with a global 
foot print (35), such as fishing (36–38), shipping (39–41), warming 

All authors with their affiliations appear at the end of this paper.
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(42–45), plastic (46, 47), and noise pollution (48, 49). We identified 
these as threats on the basis of the IUCN Threats Classification Scheme 
(TCS) v3.3 (50, 51) complemented with information from existing lit-
erature (12, 52–54) and expert knowledge (fig. S4, and see table S4 for 
details). We then obtained available global threat data for fishing 
intensity (55), shipping density (56), plastic density (46, 57), and warm-
ing (58, 59) and considered noise to be ubiquitous [based on (60)], as 

no noise dataset is currently available at the resolution needed for a 
global analyses [but see, e.g., (61)].

Known biases (23, 62, 63) associated with uneven sampling and with 
tagging individuals in known aggregations or colonies were reduced 
in our analyses as far as possible by using multiple tagging sites for 
each species and, where applicable, by normalizing data to allow for 
direct comparisons across species and taxa. From specific tests to 
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Fig. 1. Tracked movements of marine megafauna at the global scale. (A) Map of the total number of 12,794 individual track locations in the global dataset at 1° resolution 
showing the global coverage of 71.7% of the global ocean. (B) Maps per taxon showing the number of distinct individual track locations within each 1° grid cell. From top left to 
bottom right, maps per taxon show 6324 individual tracks for 39 species of flying birds; 749 for cetaceans, including 11 whales and 3 delphinid species; 1760 for fishes, including 
23 shark species, 2 manta rays, and 1 ocean sunfish; 1324 for 6 species of penguins; 65 for polar bears; 1698 for 16 species of seals; 28 for sirenians, including dugongs and West 
Indian manatees; and 846 for all 7 sea turtles. The latitudinal and longitudinal coverage of tracked data is displayed in fig. S1. For reference, the first position obtained for each 
tracked individual (i.e., representing tagging locations), as well as captured and expected global biodiversity, is given in fig. S2. Maps showing the spatial extent of space use per 
species at 1° resolution can be seen in the data repository.
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assess the influence of (i) tagging location bias, (ii) temporal resolution of 
tracking data (i.e., including only one location per individual per day, in 
addition to all locations detected), and (iii) spatial resolution (i.e., repeat-
ing all procedures at 0.5°, 1°, and 2° grid cells), we found that these po-
tential confounding factors had negligible effects on our main conclusions 
(figs. S5 to S8). Finally, randomization of tracks confirmed that animals 
are selectively using space for important behaviors (fig. S14).

Detected ecologically important areas for marine megafauna 
and extent of existing threats
We found that, on average, 66.1% of the total area covered by our 
tracking data was used as migratory corridors (50%) or residencies 
(44.8%) (Fig. 2A), with ~29% used for both behaviors (30); noting that 
for sirenians, data were insufficient to detect migratory behaviors 
(fig. S9). Animals spent on average 90% of their tracked time (esti-
mated using one position per day) within areas where we detected 
these behaviors (Fig. 2B). Most of this time (~80%) was spent in areas 
used for residency (or both residency and migration) (fig. S10), with 
considerable overlap across both behaviors.

On average, only 7.5% of the entire area covered by our tracking 
dataset occurred inside MPAs (which currently cover ~8% of the global 
ocean), with ~5% corresponding to areas of detected residency or 
migratory behaviors (Fig. 2). Similarly, animals spent a greater amount 

of time outside, than inside, MPAs (on average >85%). The time spent 
inside MPAs corresponded, on average, to 13.6% of all time animals 
spent displaying residency or migratory behaviors (ranging between 
0.3% for polar bears and 23.9% for penguins) (Fig. 2). The results in-
dicate limited opportunity for meaningful conservation of marine 
megafauna within the current extent of global MPAs, which were 
mainly designed to protect specific habitats rather than threatened 
mobile marine megafauna. However, conservation efforts could be 
considerably improved in the future by specifically including IMMegAs 
in new MPA placement.

All space use and identified residency and migratory behaviors oc-
curred with a ~40/60% split, respectively, between EEZs and the high 
seas, respectively (which, also respectively, cover 41.3 and 58.7% of the 
oceans) (Fig. 2). A similar split of space use between EEZ and high seas 
was ob tained across each taxon, with clear exceptions for sirenians 
and polar bears (for which most movements occurred inside EEZs). 
Despite this pattern of space use slightly biased toward the high seas, 
most time (on average 74.1%, of which 67.1% corresponded to detected 
migration or residency) was spent inside, rather than outside, EEZs, 
and ranged from 61.5% for flying birds to 90.2% for cetaceans (Fig. 2). 
Although protection of high seas IMMegAs is urgently needed, the large 
proportion of time that animals spend conducting important behaviors 
within EEZs suggests that an initial focus on enhancing protection 
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Fig. 2. Global space use of marine megafauna and time spent in different behaviors. Fractions of area (A) and time (B) used by animals globally (left plots), within and 
outside exclusive economic zones (EEZs) (middle plots), and within and outside existing marine protected areas (MPAs) (right plots), showing how much of the movements 
corresponded to detected migratory corridors or residency. Results are shown across all species together (top bar) and for each taxon (as displayed in the legend). For each 
taxon, the light gray portion in the bars indicates movement where no behaviors were detected. Species in each taxon group include flying birds (listed as birds), cetaceans 
(mostly whales but also dolphins), fishes (mostly sharks), penguins, polar bears (Ursus maritimus), seals, sirenians (i.e., dugongs and manatees), and turtles. (C) Map of 
detected migratory corridors, residence areas, and both corridors and residencies across taxa. Gray indicates grid cells where tracking data were available but no specific 
behavior was identified for any taxon. Light blue areas depict regions where we did not have tracking data. Maps of detected behaviors per taxon can be seen in fig. S9.
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within jurisdictions could provide the fastest benefits for marine mega-
fauna conservation, particularly because implementation may be easier.

To identify what areas could be prioritized for protection, we used an 
optimization algorithm (figs. S15 and S16) to select a total of 30% of 
the 71.7% area covered by our tracking dataset (i.e., 21.3% of the global 
ocean; Fig. 3). We did this because our tracking dataset does not cover 
 the entire ocean, and also to allow for later additions of new protected 
areas if other IMMegAs are identified once new tracking data are 
available. The optimization algorithm aims to highlight which areas 
could provide higher representativeness of IMMegAs, but also to in-
dicate where the additional protected areas could be complementary 
to existing MPAs [sensu (19)], which currently fail to represent marine 
megafauna space use (25) (Fig. 3). Our results show that 30% area 
protection allows coverage of only less than half of the IMMegAs that 
we discovered (41.6 and 38.8%, respectively, based on data and model 
predictions; fig. S17), leaving ~60% unprotected (58.4%, and 61.2% 
based on data and model predictions, respectively) (Fig. 3).

Our complemented IUCN Threats Classification Scheme (50, 51) 
(table S4) showed that commercial fishing and climate change affect 

more than 80% of the species included in our dataset (fig. S4). Ship-
ping has impacts on species across all taxa, including all turtles, 
sirenians, polar bears, and most species of cetaceans considered, plus 
five birds, four fishes, five seals, and one penguin. Plastic pollution is a 
threat for all turtles and seals [but not yet listed on IUCN for leo-
pard seals (Hydrurga leptonyx)], most cetaceans, and ~35% of birds. 
Some fishes are also listed as potentially being affected by this threat, 
including two manta rays and five sharks. Noise is listed as affecting 
all cetaceans, some seals, both sirenians, and also the polar bear, but 
for the latter this is likely due to potential disturbance of maternal 
dens on land.

Overlaying the identified (and predicted) areas used by marine 
megafauna for migration or residency behaviors at a global scale with 
each of the major global anthropogenic threats considered here (fig. 
S11), we found that >96% of IMMegAs are exposed to plastic pollution, 
shipping, and warming, and ~75% to fishing. This exposure includes 
overlaps within the areas of highest pressure observed for most 
threats—for example, in the North Atlantic, where we detected impor-
tant areas for birds, cetaceans, fishes, and turtles (Fig. 2 and fig. S9).

Table 1. Evidence of impacts from overlap of marine megafauna with anthropogenic threats. Examples of the range of impacts derived from the overlap of marine megafauna 
with anthropogenic threats such as climate warming, plastic pollution, shipping, noise pollution, and fishing. SST, sea surface temperature; UV, ultraviolet.

Birds 
(flying) Cetaceans Fishes Penguins Polar bear Seals Sirenians Turtles

Climate

Decreased survival UV damage Habitat shift Reduced prey Habitat contraction Habitat shift Reduced food Sex bias

Affected survival and 
population growth 
rate of black- browed 
albatross juveniles 
with SST changes 
(83)

Increased skin 
lesions on whale 
related with 
increased UV 
irradiance (84)

Reduced counts 
of Scalloped ham-
merhead sharks 
Sphyrna lewini 
associated with rise 
in SST (85)

Decreased 
population size 
for penguin prey 
species with 
climate change 
(86)

Contraction of polar 
bear’s habitat in 
the Arctic linked to 
long- term sea ice 
loss (87)

Decreased sur-
vival of southern 
elephant seal due 
to effects of sea 
ice dynamics on 
access to foraging 
(88)

Reduced dugong 
density by ~70% 
due to seagrass 
die- off triggered by 
an extreme heat 
wave (89)

Female- biased turtle 
populations linked 
to warming temper-
atures (90)

Plastic

Ingestion Ingestion Ingestion Ingestion – Entanglement Ingestion Ingestion

Death of shearwa-
ter and northern 
gannet due to plastic 
ingestion (91)

Stranded sperm 
whale stomachs 
with large amounts 
of plastic debris 
(92)

Threatened 
filter- feeding 
elasmobranchs by 
microplastic (93)

Plastic ingestion 
may have caused 
death (94)

Mortality of fur 
seals due to entan-
glement in marine 
debris (95)

Death of West Indi-
an manatees from 
ingestion of plastic 
debris (96)

50% probability of 
mortality when tur-
tles ingest pieces 
of plastic (97)

Shipping

Habitat loss Ship strike Ship strike Noise effects Ship strike Propeller strike Ship strike Ship strike

Habitat loss for 
common Eider’s 
avoiding shipping 
traffic (98)

Increased ship 
strikes with 
humpback whales 
in shipping lanes 
(39)

Mortality of whale 
sharks correlated 
with risk of collision 
with ships (41)

Population 
collapse con-
comitantly with 
increase in noise 
(99)

Increased vulnerabil-
ity of polar bears to 
vessel strike (100)

Propeller strikes 
affect harbor seals 
(101)

Death of manatees 
due to boat colli-
sions (102)

Decreased survival 
of green turtles 
due to boat strikes 
(103)

Noise

– Behav. change – – Disturbance Physical damage Behav. change –

Change in 
humpback whales 
foraging activity 
due to ship  
noise (104)

Disturbance of 
maternal dens due 
to seismic surveys 
(105)

Temporary hearing 
loss of gray and 
harbor seals 
around the British 
Isles (106)

Reduced foraging 
habitat for man-
atees due to boat 
noise (107)

Fishing

By- catch By- catch Mortality Reduced prey   – Entanglement Entanglement By- catch

High bycatch of 
seabirds in longline 
fisheries (38)

Higher rates of 
dolphin bycatch in 
a trawl  
fishery (108)

Greater mortality 
of pelagic sharks 
where sharks have 
higher expo sure to 
longline fisheries 
(23)

Decreased 
popu lation size of 
prey species with 
in creased fishing of 
Antarctic Krill (86)

Increased en-
tanglement of 
Cape fur seals 
associated with 
fishing (109)

Manatee mortali-
ties from entangle-
ment in fishing gear 
(110)

High levels of turtle 
bycatch in fishing 
gear hotspots (37)
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Table 2. Summary of the logistic modeling inputs and results per taxon. Results of the generalized linear models relating the probability of a grid cell to be used as residence or 
for migratory behaviors with the set of environmental variables included in each model. Shown are the results for the highest ranked model according to the weight of the 
Akaike’s information criteria (wAIC), as well as the number of parameters (k), the percentage of deviance explained (pcdev), and Kappa. Bold indicates the models not used to 
estimate the important marine megafauna areas (IMMegAs) derived from our modeling predictions (as presented in Fig. 3 and fig. S11). Species in each taxon group include 
flying birds (listed as birds), cetaceans (mostly whales but also dolphins), fishes (mostly sharks), penguins, polar bears (Ursus maritimus), seals, sirenians (i.e., dugongs and 
manatees), and turtles.

Taxon Input Results

Number of grid cells with: Residence behavior Migratory behavior

Presence Residency Migration Model k wAIC pcdev Kappa Model k wAIC pcdev Kappa

 Birds 35,875 13,448 9,128 2 19 1.000 4.13 0.22 2 19 1.000 11.19 0.33

 Cetaceans 4,397 1,501 1,758 2 19 1.000 16.52 0.44 2 19 0.980 12.62 0.29

 Fishes 15,648 4,346 4,252 2 19 1.000 14.44 0.38 2 19 1.000 12.56 0.30

 Penguins 1,385 446 452 1 17 1.000 13.62 0.4 2 19 1.000 40.16 0.56

 Polar bear 1,124 451 803 2 14 0.995 24.78 0.33 2 14 1.000 27.78 0.48

 Seals 11,358 5,510 7,175 2 19 1.000 3.12 0.22 2 19 1.000 14.91 0.30

 Sirenians 114 27 0 – – – – – – – – – –

 Turtles 10,360 3,462 3,370 3 7 1.000 7.71 0.28 2 19 1.000 5.18 0.17

A B

Fig. 3. Increase in area protection to 30% will leave ~60% of IMMegAs exposed to major anthropogenic threats. (A) Maps depicting average threat intensities for major 
anthropogenic threats with a global footprint: (from top to bottom) fishing, shipping, plastic pollution, and sea surface temperature (SST) warming. Displayed with an orange 
color palette are the threat intensities occurring inside IMMegAs, while a gray color palette is used to show the threat intensities outside IMMegAs. Note that we considered 
noise to be ubiquitous, as no noise dataset is currently available at the resolution needed for a global analyses. (B) Maps showing how much the increase in MPAs from the 
current 8% (purple) to 30% (green) would cover from our prioritization of IMMegAs detected from movement data (top map) and from our modeling predictions (bottom 
results). Note that coverage by MPAs only translates into protection from the anthropogenic threats considered if they are designated with the highest level of protection (i.e., 
with no activities allowed), and even then MPAs could only be effective for protection from fishing and shipping, leaving plastic and warming threats to continue to affect species. 
In addition to the increase in the current extent of MPAs, the introduction of mitigation strategies will assist in reducing the impact of existing threats and therefore the likelihood 
of human- induced extinctions.
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Mitigation strategies will be needed in addition to the proposed 
increase in area protection to safeguard marine megafauna
Our results reveal that the 30% threshold is insufficient to encompass all 
IMMegAs globally (Fig. 3), leaving substantial conservation risks for ma-
rine megafauna. Considering the ubiquity of existing threats, which are 
pervasive in the IMMegAs that we detected (Fig. 3 and fig. S11), and the 
limited scope of the 30% GBF target for area protection, attaining the goal 
of zero loss of important biodiversity areas and halting human- induced 
mortality of threatened species seems unlikely (noting some management 
measures already in place for some species, table S5). Shipping and fishing 
can in part be alleviated by increasing MPAs [particularly if the highest 
level of protection is afforded (64)], which can also help reduce noise 
pollution. However, plastic pollution or climate change impacts will not 
be alleviated with the planned increase in area protection [even if MPAs 
can assist improving species resistance and resilience (65)]. Therefore, 
attaining the goal of zero loss of important biodiversity areas will need 
further action to mitigate anthropogenic pressures.

To reduce exposure of marine megafauna to existing threats and 
achieve the goals set out in the GBF, the introduction of additional 
forms of ocean management will be needed, including greater scrutiny 
of practices and additional direct management decisions with in-
creased enforcement. For example, direct mortality can be reduced by 
applying fishing thresholds and enforcing standards in fishing opera-
tions (including modifications to gear) (66–70), and by developing 
wildlife- ship traffic separation schemes and slow- down areas (71, 72) 
[e.g., to 2.16 knots (73)]. If applied in tandem with the increase in pro-
tected areas, such interventions will afford marine megafauna a much 
greater spatial protection from the major threats of industrialized 
fishing (23) and shipping (41) known to cause direct mortality (Table 1).

Our analyses show that animals use a large proportion of the high 
seas but spend the majority of their time within jurisdictions. This 
presents an opportunity for marine megafauna conservation because 
individual countries regulate and control most operations within their 
borders and are therefore able to implement mitigation measures to 
manage species that use their EEZs. Management of IMMegAs in the 
high seas, outside national jurisdictions, would benefit from better 
integration into the United Nations Convention for the Law of the Sea 
(UNCLOS) and should be considered in the ongoing process to better 
regulate biological resources in the high seas (1, 2). For shipping threats 
specifically, International Maritime Organization regulations can reduce 
impacts and propel conservation success. For example, the double hull 
policy resulted in an average reduction of up to 62% in the size of oil 
spills (74). Engaging (and better regulating) the private sector is another 
timely way to advance conservation [e.g., (75)], as environmental damage 
is increasingly recognized as a threat to financial stability (75, 76). Past 
management decisions, either involving the private sector [e.g., end of 
the whaling industry following the moratorium by the International 
Convention for Regulation on Whaling (77)] or by listing species on 
CITES [Con vention on International Trade in En dangered Species (78)] 
have demonstrated success by leading to populations’ recovery. However, 
the drivers of contrasting trajectories of similar populations or species 
(e.g., right whales increase in the Southern Ocean versus decrease in 
the North Atlantic) are not well understood and likely relate to different 
exposure to anthropogenic threats in the different regions.

Creating a larger network of MPAs will also greatly benefit from fol-
lowing a systematic conservation planning framework. Although our aim 
was to identify IMMegAs (rather than outlining what the final 30% of area 
protection should look like), we followed the initial necessary steps of 
that framework, including (i) using marine megafauna biodiversity data 
(as a surrogate for marine biodiversity); (ii) using the set targets from the 
GBF and UN High Seas Treaty as a goal; (iii) focusing on complementing 
existing MPAs; and (iv) selecting IMMegAs for potential inclusion as 
MPAs. We then provide a scenario for protection for up to 30% extension 
of MPAs to show that even if all areas selected for protection specifically 
included IMMegAs, the 30% protection would still be insufficient to 

reach set targets, and other mitigation measures will be needed. To follow 
a systematic conservation planning approach, the final selection of pro-
tected areas should also take into consideration aspects not considered 
here, such as ecosystems of high ecological importance or habitat types 
that are not yet well represented, as well as considerations of equity and 
principles of environmental justice (79). It is, however, likely that the final 
selection of areas for protection will end up being designed to minimize 
impacts to stakeholders (including the fishing, shipping, energy produc-
tion, and tourism industries). Such a possible result further reinforces our 
conclusion that relying on the 30% area protection will be insufficient to 
reach the goal of zero loss of important biodiversity areas and halt human- 
induced mortality of threatened species, and that additional mitigation 
measures are needed before it is too late.

The work we provide here shows the power of assembling tracking 
datasets to answer pressing conservation concerns. The continued 
expansion of MegaMove through voluntary contributions will foster 
greater collaborations allowing researchers to fill data gaps and fur-
ther reduce biases. Whereas our tracking data cover about 71% of ocean 
space, the tagging effort was neither random nor uniform in space and 
time, and 29% of the ocean space was not covered by our dataset (in-
cluding the central and northwest Pacific ocean). We suggest that 
statistical models using existing tracking data as input could be used 
to develop refined global species distributions that take into account 
animal movements associated with short- term changes in environ-
mental parameters to project the likelihood of encountering animals 
in areas underexplored by telemetry or bio- logging (80–82).

We also recognize that the available threat distribution data that 
we used here are incomplete and do not include, for example, illegal 
or artisanal fishing fleets, or discrimination across fishing gear (which 
affects species differently). This means that a more detailed spatio-
temporal analysis of exposure to threats, as well as an assessment of 
the vulnerability of different species to specific threats, is required to 
quantify their potential impacts on species’ life- history characteristics. 
Consideration of the phylogenetic diversity of marine megafauna by 
examining evolutionary drivers could also be relevant to improving 
spatial maps. Nevertheless, the IMMegAs that we have identified are 
key to informing the expansion of existing MPAs to reach the 30% tar-
get both within EEZs and in the High Seas.
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