
Article
https://doi.org/10.1038/s41586-019-1444-4

Global spatial risk assessment of sharks 
under the footprint of fisheries

Effective ocean management and the conservation of highly migratory species depend on resolving the overlap between 
animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we 
show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, 
that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use 
hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines 
(up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort. We conclude that 
pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions 
(the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots 
of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool 
for near-real-time, dynamic management.

Industrialized fishing is a major source of mortality for large marine 
animals (marine megafauna)1–6. Humans have hunted megafauna in 
the open ocean for at least 42,000 years7, but international fishing fleets 
that target large, epipelagic fishes did not spread into the high seas until 
the 1950s8. Prior to this, the high seas constituted a spatial refuge that 
was largely free from exploitation, as fishing pressure was concentrated 
on continental shelves3,8. Pelagic sharks are among the widest-ranging  
vertebrates, with some species exhibiting annual migrations on  
the ocean-basin scale9, long term trans-ocean movements10 and/or 
fine-scale site fidelity to preferred shelf and open ocean areas5,9,11. 
These behaviours could cause extensive spatial overlap with different 
fisheries that exploit regions ranging from coastal areas to the deep 
ocean. On average, large pelagic sharks account for 52% of all of the 
identified shark catch worldwide, from both shark-targeting fisheries 
and as bycatch12. Regional declines in abundance of pelagic sharks have 
previously been reported13,14, but it is unclear whether exposure to high 
levels of fishing effort extends across ocean-wide population ranges and 
overlaps areas of the high seas in which sharks are most abundant5,13. 
The conservation of pelagic sharks—the management of which on 
the high seas is currently limited12,15,16—would benefit greatly from a 
clearer understanding of the spatial relationships between the habitats 
of sharks and active fishing zones. However, obtaining unbiased esti-
mates of the distributions of sharks and fishing effort is complicated by 
the fact that most data on pelagic sharks come from catch records and 
other fishery-dependent sources4,15,16.

Here we provide a global estimate of the extent of overlap in the use 
of space between sharks and industrial fisheries. This estimate is based 
on analysis of the movements of pelagic sharks tagged with satellite 
transmitters in the Atlantic, Indian and Pacific Oceans, together with 
the movements of fishing vessels that are monitored globally by the 
automatic identification system (AIS), which was developed as a vessel 
safety and anti-collision system (Methods). Our study focuses on 23 
species of large pelagic sharks that occupy oceanic and/or neritic hab-
itats, which span a broad distribution from cold–temperate to tropical 
waters (Supplementary Table 1). All of these species face some level 
of fishing pressure from coastal, shelf and/or high-seas fisheries: the 
International Union for the Conservation of Nature (IUCN) Red List 
assesses almost two-thirds of these species as being endangered (26%) 
or vulnerable (39%), and a further quarter as near-threatened (26%) 
(Supplementary Table 2). Although regional-fisheries management 

organizations are tasked with the management of sharks in the high 
seas, little or no management is in place for most species3,5,12–18.

Movement patterns of sharks and fishing vessels
The 11 shark species (or taxa groups) that accounted for 96% of the 
1,804 satellite tags that were deployed are among the largest of shark 
species: blue sharks (Prionace glauca); shortfin mako sharks (Isurus 
oxyrinchus); tiger sharks (Galeocerdo cuvier); salmon sharks (Lamna 
ditropis); whale sharks (Rhincodon typus); white sharks (Carcharodon 
carcharias); oceanic whitetip sharks (Carcharhinus longimanus); por-
beagle sharks (Lamna nasus); silky sharks (Carcharhinus falciformis); 
bull sharks (Carcharhinus leucas); and hammerhead sharks (Sphyrna 
spp.) (Supplementary Tables 3−5). Movement patterns indicated that 
multiple species aggregated within the same major oceanographic 
features (Fig. 1), such as the Gulf Stream (blue sharks, shortfin mako 
sharks, tiger sharks, white sharks and porbeagle sharks), the California 
Current (blue sharks, shortfin mako sharks, white sharks and salmon 
sharks) and the East Australian Current (blue sharks, shortfin mako 
sharks, tiger sharks, white sharks and porbeagle sharks), (Extended 
Data Fig. 1; see ‘Supplementary results and discussion, section 2.1’ 
in the Supplementary Information). The global relative density map 
(Fig. 2a) reveals distribution patterns of pelagic sharks and the locations 
of space-use hotspots (defined here as areas with ≥75th percentile of 
weighted daily location density) (Methods). Major space-use hotspots 
of tracked pelagic sharks in the Atlantic Ocean were in the Gulf Stream 
and its western approaches, the Caribbean Sea, the Gulf of Mexico 
and around oceanic islands such as the Azores (Fig. 2a, Supplementary 
Table 6). In the Indian Ocean, space-use hotspots were evident in the 
Agulhas Current, Mozambique Channel, the South Australian Basin 
and northwest Australia, and in the Pacific Ocean, space-use hotspots 
were in the California Current, Galapagos Islands and around New 
Zealand. Although, as expected, tagging sites occurred in some space-
use hotspots (as tagging rates are inherently higher in hotspots), we also 
identified space-use hotspots in which no tagging sites occurred in the 
North Atlantic Ocean (outer Gulf Stream, Charlie Gibbs Fracture Zone, 
western European shelf edge and the Bay of Biscay), the Indian Ocean 
(southern Madagascar, the Crozet and Amsterdam Islands, and the 
South Australian Basin) and the Pacific Ocean (Alaska Current, outer 
California Current, the white shark ‘café’ area, halfway between Baja 
California and Hawaii11, North Equatorial Current, Clipperton Island 
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and Kermadec Islands) (Extended Data Fig. 1). There was consistency 
between our fine-scale identification of hotspots of space use by sharks, 
and the coarse-scale species richness hotspots of oceanic predators esti-
mated from fishery-dependent catch data4 (see ‘Supplementary results 
and discussion, section 2.1’ in the Supplementary Information).

To determine the extent to which hotspots of space use by sharks fall 
under the footprint of global industrialized fisheries, we mapped the 
movements of fishing vessels that carry AIS transmitters (estimated to 
be fitted on 50–75% of active vessels that are over 24 m in length)19–23. 
First, we mapped the mean annual and mean monthly fishing effort (in 
days) of AIS-equipped fishing vessels that use various types of fishing 
gear19,20 for the period 2012–2016 (Extended Data Fig. 2, Methods), 
and then mapped the estimated global fishing effort of drifting pelagic 
longline and purse seine vessels separately (as these two types of gear 
catch the majority of pelagic sharks12,15) (Fig. 2b, Extended Data Fig. 2). 
The global distribution map of longline fishing effort identifies sev-
eral large-scale areas that are used heavily, such as the North Atlantic 
Ocean, southwest Indian Ocean, and the central equatorial and north-
west regions of the Pacific Ocean (Fig. 2b, Extended Data Figs. 1, 2). 
There were also areas in which industrial longline activity appeared 
sparse; for example, the central and southwest North Atlantic Ocean, 
northeast Pacific Ocean and northern Indian Ocean. We focused our 

detailed analysis of shark overlap with that of longline fishing effort, as 
it is this gear that catches most pelagic sharks globally15 and because 
most of the other types of gear used by the AIS-equipped fishing ves-
sels represented in the dataset do not target or generate abundant 
bycatch of pelagic sharks19,20 (see ‘Supplementary results and discus-
sion, section 2.2’ in the Supplementary Information). The number of 
longline-fishing-effort days estimated for the Atlantic Ocean using 
AIS data was positively correlated with the number of observed baited 
longline hooks (observed hooks) that were deployed in the Atlantic 
Ocean (Spearman’s r = 0.182, P = 0.008; n = 241) (Methods), which 
confirms that longline-fishing-effort days based on AIS data are indic-
ative of actual fishing effort19,20.

Spatial overlap of sharks and fishing effort
To explore the spatial heterogeneities of sharks and vessels, we used 
generalized additive models to determine how the relative density of 
location estimates for sharks and the distribution of longline-fishing  
effort were affected by environmental covariates (Methods, 
Supplementary Table 7). Distributions of the density of pelagic sharks 
and of the fishing effort of pelagic longline vessels were best explained 
by the same drivers: both demonstrated strong relationships with hab-
itat types that are characterized by surface and subsurface temperature 
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Fig. 1 | Movements of oceanic and neritic pelagic sharks. a, Daily state-
space model locations, estimated from locations obtained via satellite 
transmitters deployed on 1,681 sharks from 23 species between 2002 and 
2017. b–e, Extent of the space use areas of individual shark species are 

illustrated for the species with the greatest numbers of tags deployed  
across multiple ocean regions: blue shark (b), shortfin mako shark (c), 
tiger shark (d) and white shark (e). Shark images created by M. Dando.
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gradients (fronts24 and thermoclines) and/or high primary productiv-
ity (Extended Data Fig. 3, Supplementary Table 8, see ‘Supplementary 
results and discussion, section 2.3’ in the Supplementary Information). 
The similar environmental drivers that we identified between shark 
density and fishing effort predict a high spatial overlap between sharks 
and fishers: sharks are known to aggregate in biologically productive 
features (such as fronts) to enhance their foraging opportunities5,6,24, 
a behaviour that fishers exploit to increase their chances of making 
higher catches of commercially valuable epipelagic fishes (including 
sharks)5,6.

We calculated the spatial overlap of tracked sharks with longline-fishing  
effort for a mean month within the datasets (Methods). Overlap was 
defined as the spatial co-occurrence of sharks and fishing effort within a 
1° × 1° grid cell in an average month (Methods) (for grid-cell size anal-
ysis, see Extended Data Fig. 4, Supplementary Table 9, ‘Supplementary 
results and discussion, section 2.4’ in the Supplementary Information). 
The overlap between the space use of tracked sharks and fishing effort 
was dominated by pelagic longline gear (Fig. 2; compare the longline 
distribution in Fig. 2b with the distribution of fishing effort of all AIS-
equipped fishing vessels in Extended Data Fig. 2a). Globally, the dis-
tribution of longline-fishing activity in the dataset overlapped 24% 
of the mean monthly space use of tracked sharks at the 1° × 1° scale 
(mean ± s.d. monthly overlap, 23.7% ± 32.7; median, 4.5%; n = 1,681 
tracks). This estimate is unlikely to be biased by the fact that a majority 
of our tags were deployed in the northwest Atlantic Ocean or north-
east Pacific Ocean, because there was relatively low AIS-monitored 
longline-fishing effort in both regions (Figs. 1a, 2a–c). Across the four 
regions in which the majority of sharks were tracked, mean monthly 
spatial overlap of the 11 most-frequently tracked species or taxa groups 
with longline-fishing effort was 8% (eastern Pacific Ocean), 24% 
(Oceania), 37% (North Atlantic Ocean) and 38% (southwest Indian 
Ocean) (Supplementary Table 10). Differences in the overlap patterns 
between space use and fishing effort between ocean regions—and for 
species within regions—were not driven by the numbers of tags that 
we deployed (see ‘Supplementary results and discussion, section 2.1’ 
in the Supplementary Information). Overlap varied across species and 
oceans, which reflects the heterogeneous distributions of both space 
use by sharks and longline fishing activity (Extended Data Figs. 6, 7). 
For example, monthly spatial overlap with fishing effort averaged across 
all oceans ranged from 49% for the blue shark to 1.3% for the salmon 
shark. Between oceans, the overlap of space use by blue sharks (the 
pelagic shark that is most-commonly caught by open-ocean longline 
fleets17) with fishing effort was 76% in the North Atlantic Ocean, which 
decreased to 14% in the eastern Pacific Ocean (median overlap values 
are given in Supplementary Tables 10, 11).

To estimate the potential exposure of sharks in different regions of 
the oceans to longline-fishing effort, we calculated the mean monthly 
fishing effort to which individual sharks were exposed in each grid cell 
that the shark occupied during a corresponding month, standardized 
to account for variations in the durations of individual tracks; this is 
hereafter referred to as the fishing exposure index (FEI) (Methods). As 
expected, across all oceans and species sharks were exposed to highly 
variable longline-fishing effort (Supplementary Table 10). Given this, 
we tested whether the FEI was indicative of actual sharks captured and 
landed by fisheries. We compared the median monthly individual- 
species FEI for shark species in the North Atlantic Ocean (the ocean 
for which we had the most species and tracks) with official records 
from the Food and Agriculture Organization of the United Nations 
(FAO) regarding the mean annual landings of these species in the North 
Atlantic Ocean (Methods). We found a significant positive relationship 
between these FAO landings data and the individual-species mean FEI 
(linear regression, r2 = 0.45, n = 8 species (or taxa group), F = 6.72, 
F0.05(1),1,7 = 5.59, P < 0.05) (Extended Data Fig. 5), which implies that 
the index reflects fishing-induced shark mortality.

Hotspots of spatial overlap of the relative density of sharks with 
longline-fishing effort were evident, for example, in the Gulf Stream 
and stretching eastward to the Azores, on the western European shelf 

edge, in the west African upwelling, in the California Current (and 
white shark café11), in the Agulhas Current, on the southern Great 
Barrier Reef, and in New Zealand shelf waters (Fig. 2c). This demon-
strates that, globally, high levels of fishing effort are focused on exten-
sive hotspots of space use by sharks (Supplementary Tables 6, 12). 
Nonetheless, substantial areas of the high seas that are used by pelagic 
sharks may exist that are largely free from the AIS-monitored fishing 
activity of longline and purse seine vessels, which could be targeted 
for shark conservation measures (see ‘Supplementary results and dis-
cussion, section 2.7’ in the Supplementary Information). Identifying 
such areas can only be addressed using fishery-independent distribu-
tions (as are presented here). However, a general characteristic of large 
areas with low levels of longline-fishing activity was lower densities of 
sharks (<75th percentile of relative density) (Fig. 2a), which indicates 
that sharks were not remaining in these areas but were rather moving 
through them—potentially as part of foraging excursions or migrations 
for reproduction9,11. The lower relative density of sharks in these areas 
suggests lower productivity—which is supported by our modelling 
results (model 1) (Extended Data Fig. 3)—and, consequently, poorer 
fishing opportunities (which may explain the apparent low levels of 
fishing effort in these areas). The results also show that very few large 
hotspots of space use by pelagic sharks occurred in areas that are free 
of AIS-equipped fishing vessels, particularly those with longline and 
purse seine gear (Fig. 2c, Extended Data Fig. 2c, d).

Determining the spatial risk to sharks from fishing
The extent of spatial overlap between the relative density distribution 
of sharks and longline-fishing effort indicates which species are more 
at risk from fishing, and how this risk is distributed (Fig. 3). Because 
we demonstrate that a large proportion of shark mortality related to 
fishing (as represented by landings) is related to longline-fishing effort 
in areas of shark space use, it follows that sharks that have both a high 
overlap with fishing effort and a high FEI (greater susceptibility) will 
be at a greater risk of capture than those with low overlap and low 
FEI (Fig. 3). We found the main commercially valuable pelagic sharks 
were grouped within the highest potential risk zone in the North 
Atlantic Ocean and eastern Pacific Ocean (blue sharks and shortfin 
mako sharks) (Fig. 3a, b; see ‘Supplementary results and discussion, 
section 2.5’ in the Supplementary Information for significance tests, 
and for results for the other species). In the North Atlantic Ocean, 
shortfin mako sharks and blue sharks were at a significantly greater risk 
compared to other tracked sharks, because their mean monthly space 
use overlap (62% (median, 71%) and 76% (median, 81%), respectively) 
co-occurred with a high mean FEI (Fig. 3a, Extended Data Figs. 6,7, 
Supplementary Table 10). However, exposure risk varied between 
oceans because, although the spatial overlap with fishing effort of blue 
sharks remained relatively high in the southwest Indian Ocean, and 
for blue sharks and shortfin mako sharks in Oceania (mean, 18–47%; 
median, 11–33%; Supplementary Table 10), individual-species FEI 
means were lower in areas of overlap in these regions (Fig. 3a, c, d).

Among sharks that are generally considered to be of less commer-
cial value (including tiger sharks and bull sharks), we found that risk 
from longlines was high in some—but not all—regions. Bull sharks 
used spatially limited near-shore habitats in tropical regions within 
the southwest Indian Ocean: in these areas, they were at increased risk 
owing to high mean overlap with fishing effort (94%) and high mean 
FEI (Fig. 3c, Supplementary Table 10). This greater susceptibility could 
lead to high localized catches, which (if replicated elsewhere) could 
explain why bull sharks are one of the ten most-commonly traded 
species in the Hong Kong fin market25. By contrast, tiger sharks were 
exposed to lower overlap and lower mean FEI in all ocean areas except 
for Oceania, where they were within the highest potential-risk zone 
(Fig. 3a–d, see ‘Supplementary results and discussion, sections 2.5, 2.6’ 
in the Supplementary Information).

High risk was evident for internationally protected sharks under the 
Convention on International Trade in Endangered Species (CITES) 
Appendix II and regional-fisheries management organization 
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regulations. The porbeagle shark (global status of endangered on the 
IUCN Red List) and white shark (global status of vulnerable on the 
IUCN Red List) have low population sizes compared to historic levels 
(Supplementary Table 2). In the North Atlantic Ocean and Oceania, 
we found that the porbeagle shark occurred in the highest-risk zone 
(Fig. 3a, d), which indicates a high potential for mortality as a result 
of incidental bycatch. White sharks were in the highest-risk zone in all 
oceans in which they were tracked, with a mean spatial overlap with 
fishing effort that ranged from 15% (median 13%) in the east Pacific 
Ocean to 64% (median 65%) in the southwest Indian Ocean—except 
for the North Atlantic Ocean, in which their mean FEI was just below 
the average FEI for all species (Fig. 3, Supplementary Table 10). Our 

results show a high risk for porbeagle sharks and white sharks from 
longline fishing across broad regions, and highlight the need for contin-
ued protection—including sufficient coverage by scientific observers on 
vessels, to underpin accurate data reporting—so that stock rebuilding 
can continue26. For the northeast Atlantic porbeagle shark, this rebuild-
ing is estimated to take a further 15–30 years to reach sustainable levels 
even if fishing mortality is reduced to zero18.

Decreasing the grid-cell size in spatial analyses can lead to concom-
itant decreases in the estimates of percentages of spatial overlaps19,20, 
which could potentially affect the patterns of species risk exposure that 
we found. However, a grid-cell size analysis showed that the patterns 
of species occurrence within the high- or low-risk zones remained 
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consistent, irrespective of the spatial scale at which they were observed 
(Extended Data Fig. 4) or the subset of tracking years that were ana-
lysed (Extended Data Figs. 8, 9, see ‘Supplementary results and discus-
sion, section 2.4’ in the Supplementary Information).

Temporal variation in risk
The highest levels of exposure risk of sharks to longline fisheries were 
not constant through time, but instead varied seasonally as space use 
by sharks and fishing vessels shifted in relation to each other (Fig. 4, 
Extended Data Fig. 10). Overall, for species with sufficient data (Fig. 4) 
the mean monthly overlap of species space use with fishing effort com-
bined with mean FEI showed that sharks spent 4–6 months per year 
in the lowest-risk zone and 2–6 months in the highest-risk zone, with 

differing patterns of changing risk from fishing evident across species 
(Fig. 4). For example, the highest risk for white sharks in the southwest 
Indian Ocean and blue sharks in the North Atlantic Ocean occurred 
at discrete times in the year. For white sharks in the Indian Ocean, this 
pattern arises from long-range seasonal movements (that take place 
in December to February, June, July, and October) into annually per-
sistent areas with high mean FEI. For blue sharks, the pattern appears 
to be driven by sharks and longline vessels co-occurring maximally in 
boreal winter and summer: lower exposure risk occurs during boreal 
spring and autumn, as sharks migrate north before returning south5. 
Longline fisheries also make this seasonal south–north–south move-
ment, but lag behind movements of blue sharks (and thus exhibit lower 
mean overlap and FEI during these times) (Extended Data Fig. 10a–d). 
Similarly, annual risk patterns of white sharks in the eastern Pacific and 
tiger sharks from around Australia were driven by migratory behav-
iour, with the highest risk occurring for three consecutive months in 
boreal (for white sharks) and austral (for tiger sharks) spring as sharks 
arrive in areas with higher-than-average exposure to longline-fishing  
effort (Fig. 4c, e). By contrast, shortfin mako sharks in the North 
Atlantic Ocean were exposed to high mean overlap (about 60%) and 
high mean FEI continually through the boreal summer and autumn 
(July to October), principally owing to their occupation of a space-use 
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Fig. 4 | Temporal changes in the exposure risk to sharks of longline 
fishing. a–e, Monthly mean spatial overlap of sharks and longline fishing 
effort versus monthly mean FEI for all individuals of that species for the 
four most data-rich species in a relative year: blue sharks (a), shortfin 
mako sharks (b), white sharks (c, d) and tiger sharks (e). Lines separating 
the coloured zones are fixed at the respective individual-species average 
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risks (red, highest risk; green, lowest risk). Error bars denote ± 1 s.d. of the 
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hotspot that is located where the Gulf Stream and Labrador Current 
converge, which results in persistent high overlap with high levels of 
longline-fishing effort (Fig. 4b, Extended Data Fig. 10e–h). Tracking of 
shortfin mako sharks and vessels indicates that fishery-induced mor-
tality within this hotspot is therefore likely to be high. This was con-
firmed by the high overall return rate of satellite tags (19.3%) attached 
to shortfin mako sharks in the Atlantic Ocean (n = 119 tags; tracking 
duration: mean ± s.d., 161.5 ± 156.9 days; median, 109 days), which 
were returned to us after sharks were captured by longline fleets in the 
Atlantic Ocean during the study. To our knowledge, this is the high-
est species-specific return rate for sharks that has yet been recorded 
in an ocean-scale (as opposed to a regional-scale) study27,28 (Fig. 2c, 
Supplementary Table 13, see ‘Supplementary results and discussion, 
section 2.6’ in the Supplementary Information).

Discussion
Our results show that globally important habitat areas for threatened 
pelagic sharks overlap considerably with industrial fishing activity, in 
both space and time. Given the high levels of fishing effort in hotspots 
of space use of many species for substantial portions of the year, and 
the very-few tracked hotspots that are free from exploitation, our study 
reveals that the exposure risk of sharks to fisheries in the high seas 
is spatially extensive—for some species, this exposure risk stretches 
nearly across their entire ocean-scale population ranges. Overall, the 
patterns that we observed suggest a future in which sharks experience 
only limited spatial refuge from industrial longline-fishing effort, which 
is currently centred on ecologically important hotspots of space use for 
oceanic sharks. Our distribution maps are a first, but essential, under-
pinning for a conservation blueprint for pelagic sharks in the high seas. 
Our study highlights the scale of the overlap between fishing effort 
and hotspots of space use by sharks, and argues for more-effective and 
timely monitoring, reporting and management of pelagic sharks as a 
result. To enhance the recovery of vulnerable species, one solution is the 
designation of large-scale marine protected areas29 around ecologically 
important space-use hotspots of pelagic sharks24—notwithstanding the 
need for more-complete reporting of catch data, with enforcement to 
support stricter conventional management bycatch prohibitions, quotas 
or minimum sizes5,16. This study also outlines shark space-use hotspot 
locations at which AIS-monitored fishing effort appears at present to 
be relatively low; these locations are ones in which shark conservation 
could be maximized, while minimizing the effect on fishing activity 
that is not directed at sharks (‘Supplementary results and discussion, 
sections 2.6, 2.7’ in the Supplementary Information). Although it 
would be challenging to develop a legally binding treaty for managing 
high-seas fauna21, burgeoning technology for global surveillance and 
enforcement now offers additional options for a step change in ocean 
management6,30.

Satellite monitoring of marine megafauna1,5,11,31, oceanographic 
features (eddies and fronts)6,24 and the distribution of global fishing 
vessels19,20 could provide signals of shifting space use by wide-ranging 
sharks and other marine megafauna owing to environmental changes, 
which—in turn—could inform the designation of new temporary 
time–area closures to industrial fishing6 and the tracking of fishers’ 
displacement activities21. The potential of near-real-time, synoptic 
measurements of marine megafauna, fishing activity and the marine 
environment (particularly given the remoteness and vast extent of the 
high seas) suggests technology-led conservation measures will be cru-
cial tools for reversing the observed declines in iconic ocean predators3 
such as pelagic sharks12–14,30. In the future, conservation technology 
could develop towards the incorporation of adaptive management strat-
egies6,30 that are actionable in real time to assess risks in the overlap 
between fishing vessels and sharks across the global ocean.
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Methods
No statistical methods were used to predetermine sample size. The experiments 
were not randomized and investigators were not blinded to allocation during 
experiments and outcome assessment.
Study animals and tagging. From 2002 to 2017, we tagged 1,804 pelagic sharks 
with satellite transmitters at multiple tagging sites in the Atlantic Ocean, Indian 
Ocean and Pacific Ocean (Extended Data Fig. 1), including 649 in the North 
Atlantic Ocean, 588 in the eastern Pacific Ocean, 151 in Oceania and 153 in 
the southwest Indian Ocean: 60% of deployments occurred between 2010 and 
2017 (Extended Data Fig. 1, Supplementary Tables 3–5). The number of tagged 
individuals varied among species, and ranged from 1 to 280. Two types of  
satellite-transmitter tag (position-only advanced research and global observation 
satellite (ARGOS) transmitter and pop-off satellite archival transmitter (PSAT)) 
were used. Sharks were captured with baited hooks (longlines, rod-and-line angling 
or with handlines), in purse seine during commercial fishing operations, or tagged 
free-swimming in the water. Tags were attached to the first dorsal fin or in the 
dorsal musculature. All animal handling procedures were approved by institutional 
ethical review committees and completed by trained personnel (see Supplementary 
Information for details). Data were provided by the data owners to the senior 
author and quality-checked before archiving in a database. Poor-quality data were 
reported for 123 tags (72 ARGOS and 51 PSAT), owing to (for example) early tag 
failure, premature tag pop-off or a high percentage of locations estimated with 
high spatial error (for example, raw computed geolocations over land). All of 
these resulted in poor state-space model fits, which led to short or unreliable track 
reconstructions. Analyses were therefore restricted to the remaining 1,681 tracks 
from 1,066 ARGOS and 615 PSAT tags on sharks from 23 species, ranging in total 
duration per species from 20 to 57,037 days with a median of 4.1 years total track 
time per species (Supplementary Table 3). The number of sharks tracked within 
each region is given in Supplementary Table 14.
Track processing. Movements of PSAT-tagged sharks were estimated using either 
satellite-relayed data from each tag or from archival data after the tags were physi-
cally recovered. Data were provided as: (i) raw shark positions that were previously 
reconstructed using software provided by the tag manufacturers (for example, 
Wildlife Computers or Microwave Telemetry), in which daily maximal rate-of-
change in light intensity was used to estimate local time of midnight or midday 
for longitude calculations, and day-length estimation for determining latitude32,33; 
or (ii) filtered positions in which a state-space model (SSM) (unscented Kalman 
filter with sea-surface temperature, UKFSST)34 had been applied to correct the 
raw geolocation estimates and obtain the most-probable track. In the first case, 
raw positions were corrected using the UKFSST SSM (UKFSST R package) in 
addition to a bathymetric correction applied to the initial Kalman position esti-
mates (analyzepsat R add-on). A daily time-series of locations was estimated using 
a continuous-time correlated random walk (CTCRW) Kalman filter35 (crawl R 
package). UKFSST geolocations were parameterized with s.d. constants, which 
produces the smallest mean deviation from concurrent ARGOS positions36. In the 
latter case, the CTCRW SSM was applied to produce regular time-series.

For ARGOS transmitter tags, data were provided as raw ARGOS (Doppler 
frequency shift) position estimates. Location class Z data—assigned for a failed 
attempt at obtaining a position—were discarded from the dataset. The remaining 
raw position estimates (location classes 3, 2, 1, 0, A and B) were analysed point-
to-point with a speed filter of 3 m s−1 to remove outlier locations. Subsequently, 
the CTCRW SSM was applied to each individual track, which produced a single 
position estimate per day using model parameters implemented in the crawl R 
package35.

Shark tracking data from the Tagging of Pacific Predators (TOPP) program were 
downloaded from the Animal Tracking Network hosted by the Integrated Ocean 
Observing System (https://ioos.noaa.gov/project/atn/, downloaded September 
2017). Both ARGOS and light-based geolocation data in the Animal Tracking 
Network had already been filtered with a Bayesian-based SSM37. In brief, the SSM 
was fitted to each track individually, using the WinBUGS software that conducts 
Bayesian statistical analyses using Markov chain Monte Carlo sampling38. For 
each track, two Markov chain Monte Carlo chains each of length 10,000 were 
run and a sample of 2,000 from the joint posterior probability distribution was 
obtained by discarding the first 5,000 iterations and retaining every 5th of the 
remaining iterations. SSM fits were posteriorly inspected for obvious problems  
(for example, unrealistic movements11). Because two different SSMs were applied 
to data used in this study, we tested for possible biases in the spatial density analysis  
(see ‘Spatial density analysis’) by comparing 1° × 1° density grid maps obtained 
with both UKFSST and Bayesian-based filtered tracks using a subset of 83 ARGOS-
linked tracks in the North Atlantic Ocean (blue shark, n = 27; shortfin mako 
shark, n = 42; white shark, n = 3; and oceanic whitetip shark, n = 11). Differences 
in spatial grid density between the two methods were negligible (Supplementary 
Fig. 1). Thus, tracks with daily locations were reconstructed for 1,681 individuals, 
totalling 281,724 tracking days (Supplementary Table 3).

Spatial density analysis. To obtain unbiased estimates of shark spatial density, 
gaps between consecutive dates in the raw tracking data were interpolated to 
one position per day. Long temporal gaps without tag-reported location data 
in a reconstructed track can result in extensive interpolated movements driven 
by the underlying random walk model rather than the movement pattern of the 
shark11. Although the frequency of long temporal gaps without data (>20 days) in 
our dataset was low (Supplementary Table 15), any tracks with gaps without data 
that exceeded 20 days were nonetheless split into segments before interpolation, 
thus avoiding the inclusion of unrepresentative interpolated location estimates5. 
Similarly, location estimates derived for periods without data that exceeded 20 days 
were also discarded from TOPP data11.

To account for biases in spatial location density associated with (i) variable 
track lengths and (ii) shorter tracks near the tagging location, we broadly followed 
a previously published basic time weighting procedure11. In this study, each daily 
location estimate of an individual was weighted by the inverse of the number of all 
individuals with location estimates for the same relative day of their track:

= / ∈w n i I1 for (1)it t

in which wit is the weight for the tth location estimate of the track of the ith indi-
vidual, nt is the number of total individuals with a tth location estimate, and I is 
the set of individuals of all species. We calculated weights for all individuals, irre-
spective of species, to estimate the global relative spatial density of pelagic sharks 
(that is, Fig. 2a). Periods with gaps without data that exceeded 20 days were not 
included when weighting the locations. To minimize bias in estimates of spatial 
density patterns when sample sizes were lower, a modified version of a previously 
published weighting procedure11 was implemented, such that location weights 
after a threshold day of the relative track were fixed equal to the weight on the day 
corresponding to the 85th percentile of track lengths. Under this weighting scheme, 
individual location estimates closer to the tagging location tended to receive a 
lower weight than later locations as—owing to tag failure—transmissions of satel-
lite locations are more likely earlier in the track of an individual shark. Therefore, 
longer tracks received a higher total weight than shorter tracks because of the lower 
number of long tracks and, consequently, the lower value of nt towards the end of 
the track. Calculated spatial densities were therefore more representative of the 
actual distributions, and less affected by tag loss, failure or a spatial bias towards 
deployment location.

The weights for all individuals (equation (1)) were normalized so that they 
summed to unity. Therefore, within the study area, all individuals contributed 
equally to the described global spatial density patterns:

∑ ∑=
∈ =
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in which Dit is the relative density contribution of the tth location estimate for 
individual i, and Ti is the number of location estimates for individual i. The relative 
density contributions for all location estimates for all individuals (Dit) were then 
summed within each grid cell of the study area for each month of a relative year, 
which gave 12 spatial relative density maps to compare with monthly longline-fishing  
effort. The mean annual Dit per grid cell for a relative year was calculated from 
the 12 monthly relative densities per grid cell to provide the global relative density 
of tracked sharks mapped in Fig. 2a. Hammerhead sharks (3 species) and mako 
sharks (2 species) were analysed as taxa groups: Sphyrna spp. and Isurus spp., 
respectively. The spatial coverage of 1° × 1° grid cells occupied by sharks per ocean 
region was between 53% (eastern Pacific Ocean) and 25% (Oceania) of total grid  
cells (Supplementary Table 15). Spatial relative densities of locations were also  
calculated for each of the ten most data-rich species separately at a 1° × 1° grid-cell 
size (Extended Data Figs. 6, 7). We followed the same procedure as for the all-species  
spatial density calculation, but instead weighted by the inverse of the number of 
total individuals of a single species on the same relative day of their track, and with 
the weights for each species normalized to one.

To examine how the broad spatial distribution of sharks between years may 
have changed, we re-calculated the relative density contributions for all location 
estimates for all individuals (Dit) together within each of eight consecutive two-year 
classes starting in 2002 (Extended Data Fig. 8). Each daily location within a class 
was weighted by the inverse of the number of individuals with location estimates 
for the same relative day of the two years (for example, 1 January 2012 is the rel-
ative day 1 of all tracks in each of two years that were active on that date). Similar 
to the weighting scheme applied to the main data, periods with gaps without data 
that exceeded 20 days were not included when weighting the locations. After the 
85th percentile of the track length, daily weights were fixed as for the all-species 
spatial density. Total weights for all individuals within each two-year class were 
normalized to one. In addition, owing to a mismatch in the years of data avail-
ability between sharks and fishing vessels, exposure risk (overlap and FEI) was  

https://ioos.noaa.gov/project/atn/
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re-calculated for the period between 2012 and 2016, which was common to both 
sharks and longline-fishing vessels (Extended Data Fig. 9). Relative density of all 
individuals (Dit) was re-calculated on the basis of the weighting scheme, consider-
ing only individuals with tracks that were within the 2012–2016 period.
Fishing vessel geolocation data. The AIS was developed as a vessel safety and 
anti-collision system with global coverage, rather than to track fishing vessels for 
fishery management purposes19–23. However, its global coverage of the locations 
of many thousands of ships through time enables the analysis of the distribution 
of fishing effort19–23. Here, fishing-effort (hours of fishing) data, gridded at 0.01° 
by flag state, and estimated gear type were obtained from Global Fishing Watch 
(GFW) (available at https://globalfishingwatch.org/datasets-and-code/fishing-ef-
fort/). GFW used raw AIS vessel tracking data obtained from ORBCOMM via 
their AIS-enabled satellite constellation (https://www.orbcomm.com/eu/networks/
satellite-ais) to calculate fishing effort and derive the gridded data, as previously 
described in detail19,20. In brief, GFW uses two neural network algorithms to cat-
egorize different types of fishing gear (for example, drifting longlines or purse 
seines), in addition to estimating the spatiotemporally resolved locations at which 
fishing gears were most likely to be deployed by individual vessels19,20. We used the 
GFW gridded fishing-effort data in the years 2012 to 2016 for all gear types, and 
for estimated drifting pelagic longlines and purse seines. The GFW gear-type clas-
sification algorithms are being continuously refined to correct for acknowledged 
contamination of some gear types with others in some regions19,20 (for example, 
drifting longlines with bottom-set longlines off New Zealand). For each gear type 
in this study, we summed the number of hours fishing in a month (expressed as 
days, in which 24 h of fishing effort = 1 day) within each 1° × 1° grid cell to pro-
vide 12 monthly global fishing-effort maps. The mean annual fishing effort per 
grid cell in a relative year was calculated from the 12 monthly fishing-effort maps. 
Global distributions of fishing effort for all gear types, longlines and purse seines 
were mapped separately and overlaid by shark spatial relative density of locations 
for all individuals (Dit) to determine spatial overlap intensity (the fishing effort to 
which sharks were exposed; see ‘Shark and vessel spatial overlap and effort’). AIS 
data coverage increased from 2012 to 2016 as more satellite AIS receivers were 
launched and commenced operation19,20. However, the global spatial distribution 
of longline-vessel fishing effort was broadly similar across years (Supplementary 
Fig. 2), and variation in annual maximum fishing effort displayed no increasing 
trend over time, which indicated that our calculated mean annual fishing effort for 
2012–2016 did not overestimate the spatial overlap or fishing effort, but can be con-
sidered conservative (Supplementary Fig. 2). To test that the numbers of longline 
fishing days per grid cell from AIS data were representative of actual fishing effort 
as measured by the numbers of baited hooks deployed by longline vessels, we 
correlated fishing days using AIS data from the Atlantic Ocean with International 
Commission for the Conservation of Atlantic Tunas (ICCAT) observed hook data 
(downloaded from https://iccat.int/en/accesingdb.html). We compared the total 
number of observed hooks in ICCAT data at a 5° × 5° grid-cell size (the finest 
spatial resolution for these ICCAT data) with the total number of fishing days in 
the AIS dataset, also at 5° × 5°. To calculate the fishing-effort days from AIS data in 
each 5° × 5° grid cell, we summed the days in the 1° × 1° cells that fell within each 
5° × 5° cell. Data were used from 2015, the most recent year for which we had both 
ICCAT hook data and comprehensive longline-fishing coverage from AIS data.
Shark and fishing-effort environment modelling. To model shark and fishing 
vessel distributions in relation to environmental variables, data were extracted 
from online databases (Supplementary Fig. 3). The environmental variables were 
selected on the basis of their demonstrated importance in affecting shark occur-
rence and included: (i) sea water temperature (°C) (abbreviation used in models: 
sea-surface temperature, SST; temperature at 100 m, TEM_100), which is known 
to influence the presence of many pelagic shark species5,11; (ii) maximum ther-
mal gradient (Δ°C per 100 km) (TGR) influences shark spatial density5, and was 
calculated here on the basis of the SST data and using maximum gradient maps 
by determining where, for each pixel, a geodetic-distance-corrected maximum 
thermal gradient was identified; (iii) sea water salinity (in psu) (SAL), an important 
determinant of habitat use in some sharks1,39; (iv) sea-surface height above geoid 
(in m) (SSH), which influences shark presence5 and catches by fisheries6; (v) ocean 
mixed-layer depth thickness or thermocline depth (in m) (MLD), which affects 
the foraging behaviour of pelagic sharks40; (vi) mass of chlorophyll a in sea water 
(mg m−3) (CHL) as a proxy for productivity, which often characterizes the pre-
ferred habitats of sharks5,40; (vii) mole concentration of phytoplankton, expressed 
as carbon in sea water concentration (mmol m−3) (PHY), as a direct measure of 
productivity; (viii) net primary production of biomass, expressed as carbon per 
unit volume in sea water per day (g m−3 d−1) (NPP), which quantifies produc-
tivity; and (ix) mole concentration of dissolved molecular oxygen in sea water 
(mmol m−3) (DO), which can strongly influence shark space use1. Environmental 
datasets i–v were downloaded from Copernicus Marine Environment Monitoring 
Service (CMEMS) Global Ocean Physics Reanalysis product (http://marine.coper-
nicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details 

&product_id=GLOBAL_REANALYSIS_PHY_001_025; downloaded November 
2017) and datasets vi–ix from CMEMS Global Ocean Biochemistry Hindcast 
product (http://marine.copernicus.eu/services-portfolio/access-to-prod-
ucts/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_
BIO_001_029; downloaded November 2017). CMEMS data were available for 
2002 to 2014 from the surface to 5,500 m as monthly datasets. Overall averages 
(2002–2014) were calculated at a 1° × 1° grid-cell resolution for surface and 100-m 
depth layers (with the exception of SSH and MLD) (Supplementary Fig. 3). Most 
of these variables and interactions are also considered important for explaining 
fishing patterns5,6.

We developed and compared a set of generalized additive models (GAMs) with 
a Gaussian family and an identity link, using the log-transformed relative density 
of locations of all individual sharks (Dit) as the response variable. We used the 
relative density of sharks rather than presence and absence data, because our main 
aim was to highlight the areas in which the highest overlap with fishing effort 
might occur. Because we were interested in identifying areas (grid cells) with the 
highest overlap, and understanding how general environmental variables might 
influence shark density in specific locations, we considered the relative density 
for all 23 shark species combined without considering random effects per species. 
All environmental variables were standardized (mean-centred and divided by the 
s.d.) and collinearity was checked before inclusion in the models. Highly skewed 
environmental variables were logged before standardization: this included most 
predictors at the surface (except for SAL and SSH), as well as NPP (for sharks only) 
and TGR at 100 m (TGR_100). All possible combinations of 16 variables were not 
undertaken, owing to collinearity. Rather, we focused on testing ecologically rel-
evant hypotheses. A description of the general hypothesis tested with each model 
included in the model set is given in Supplementary Table 7. It was necessary 
to include models with a reduced number of variables because some variables 
were collinear, and those variables were included in other models. Because sharks 
respond to surface and subsurface thermal gradients (which often support higher 
biological productivity)5,6,11,40, we tested for interactions between MLD and SST, 
CHL and MLD at 100 m (MLD_100), CHL at 100 m (CHL_100) and TEM at 100 m  
(TEM_100), MLD and TGR at the surface, MLD and CHL_100, CHL_100 and 
TEM_100, and between SAL and TEM_100.

A GAM with a Tweedie distribution and log-link function provided the best 
modelling approach for the fishing effort data (including zeros in grid cells), as 
this distribution includes a family of probability distributions including normal, 
gamma, Poisson and compound Poisson–gamma. We considered two response 
variables separately: fishing effort (days of fishing per grid cell) of all AIS-equipped 
fishing vessels, and fishing effort of AIS-equipped longline-fishing vessels only. We 
did not consider presence and absence data, because our aim was to understand 
how environment influenced variations in fishing effort. In our model set, we 
included different combinations of a total of the same 16 explanatory environ-
mental variables used for shark density modelling (Supplementary Table 7), and 
also a null (all terms equal to zero), intercept-only model. The dimension basis 
for all terms was limited to 5 (that is, k = 5) to assist controlling for overfitting41. 
We then used the Akaike’s information criterion (AIC)42 to compare the models 
in the model set for all sharks and fishing vessels. We assessed the relative strength 
of evidence for each model using the weights of AIC, and the goodness-of-fit of 
each model by calculating the percentage of deviance explained (%DE). All models 
were implemented in R using the mgcv package43.
Shark and vessel spatial overlap and effort. The spatial overlap (in per cent) 
between an individual tracked shark and fishing effort was calculated as the 
number of grid cells that sharks and fishing effort (in days) occurred in the same 
1° × 1° grid cells in an average month, as a function of all shark grid cells occupied 
and standardized for shark track length. This was summarized as spatial overlap 
(%) = 100(no/nc), in which no is the number of grid cells occupied by an individ-
ual tracked shark that overlap with grid cells with fishing effort and nc is the total 
number of grid cells occupied by an individual tracked shark. The mean monthly 
spatial overlap of an individual shark was determined from monthly spatial overlap 
values, and the mean monthly spatial overlap per species was calculated by averag-
ing the mean monthly individual spatial overlap values across all individuals of a 
species within each ocean region. A fixed 1°× 1° geographical grid cell (in which 
1° = 110.6 km) was chosen, because it is the approximate length of high-seas 
longlines (that is, 100-km long with an average of 1,200 baited hooks5 that attract 
fish over long distances19,20); because it was similar to the broad light-based geolo-
cation error field of PSAT tags (n = 615 sharks; 37% of the total tracks) after SSM 
processing that we used here, generally shown to be about 0.4–1.5° latitude (about 
45–167 km)32,44–46; and because it exceeded the upper 95% confidence intervals of 
the mean daily movement distances of the widest-ranging sharks that we tracked 
(Supplementary Table 16). In addition, the 1° × 1° grid-cell size was suitable to 
reduce the effects of gaps in AIS coverage that, at smaller grid sizes, could poten-
tially result in substantial unrecorded fishing effort per grid cell19–23. To examine 
the effect of grid-cell size on estimates of spatial overlap19,20,47, we calculated the 
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overlap of all sharks tracked with ARGOS transmitters, from which locations esti-
mated from SSMs were fitted to ARGOS observations (for example, 2.4–5.5-km 
spatial accuracy48), with longline-fishing effort at 2° × 2°, 1° × 1°, 0.75° × 0.75°, 
0.50° × 0.50°, 0.25° × 0.25° and 0.10° × 0.10° grid-cell sizes (Extended Data Fig. 4, 
Supplementary Fig. 4).

An estimate of the exposure of an individual shark to fishing effort within each 
grid cell occupied during its observed track was termed the FEI and calculated as:

=
∑ = f d

n
FEI (3)i ii

n
1

Here FEI pertains to an individual shark per month in a given year. The term fi is 
the fishing effort (number of vessel days) in grid cell i occupied by a shark during 
its track; di is the relative density contribution for all location estimates for an indi-
vidual shark summed in grid cell i of its track (that is, location estimates of an indi-
vidual shark were weighted by the inverse of the number of total individual sharks 
of a single species on the same relative day of their track, and with the weights for 
each species normalized to one; see ‘Spatial density analysis’); and n is the number 
of grid cells occupied by an individual shark during its track in a given month of a 
given year. Individual mean FEI was calculated for an individual shark by averaging 
the monthly FEI values of an individual shark through time (over the duration of its 
observed track in monthly steps). To estimate the typical exposure within a species, 
individual-species mean FEI was calculated by averaging individual-shark mean 
FEI values for that species within each ocean region (Figs. 3, 4).

To map the mean monthly spatial variation in overlap and fishing effort (fish-
ing exposure) within the space used by sharks (Fig. 2c), we calculated the product 
of Dit and fi in each grid cell in each month of a relative year across individual 
sharks (regardless of species), and averaged across the 12 months within each 
grid cell. In addition, for comparing temporally matched shark–vessel spatial 
overlap and fishing effort in 2012–2016, we repeated the calculation above but 
including only those individuals (species) present within these years by multi-
plication of fi with the re-calculated Dit for those years only (see ‘Spatial density 
analysis’ for details).

To test for differences in the exposure risk of sharks to fishing activity between 
different species within the general fishing areas designated by the FAO (Extended 
Data Fig. 1c), we undertook statistical analysis of exposure risk calculated for 
each shark as the product of the mean monthly spatial overlap and mean monthly 
fishing effort. Because the data were not normal (Shapiro–Wilk normality test, 
P < 0.05), a Kruskal–Wallis test was performed (with pairwise Wilcoxon rank-sum 
tests as a post hoc test). Because of differences in the number of tagged individ-
uals per species, groups of >25 sharks per species were randomly selected and 
the Kruskal–Wallis test performed. This procedure was repeated 1,000 times and 
the percentage of times that significant differences were observed was recorded. 
Species with fewer than 25 individuals tracked were removed from the analysis. 
Given the lower numbers of sharks tracked in the southwest Indian Ocean and 
Oceania regions (Supplementary Table 14), statistical tests were restricted to the 
North Atlantic Ocean and eastern Pacific Ocean regions. In the Atlantic Ocean, 
selected species were P. glauca (n = 152), Isurus spp. (n = 120), G. cuvier (n = 131), 
C. carcharias (n = 26), C. longimanus (n = 99), L. nasus (n = 46), C. leucas (n = 38) 
and Sphyrna spp. (n = 40); in the Pacific Ocean, species were P. glauca (n = 112), 
I. oxyrinchus (n = 113), L. ditropis (n = 172), R. typus (n = 77) and C. carcharias 
(n = 59).
Shark landings. Mean annual pelagic shark landings (t) by species/taxa groups 
were obtained from the FAO database (www.FAO.org/fishery/statistics/glob-
al-capture-production/query/en; downloaded September 2018) and related to 
the median monthly FEI of each species or taxa group. Landings reported for the 
North Atlantic Ocean (northwest, northeast, western central and eastern central 
Atlantic Ocean) between 2007 and 2016 were used in the analysis, because these 
spanned the main period during which most sharks were tracked (70% between 
2007–2017) and longline-fishing effort was monitored (2012–2016). Data were 
extracted for eight species or taxa groups that are regularly caught by shelf and/or 
high-seas fisheries in the North Atlantic Ocean, the region in which most tags were 
deployed. The species and taxa groups were P. glauca, I. oxyrinchus, C. longimanus, 
C. leucas, L. nasus, G. cuvier, C. carcharias and hammerheads (Sphyrna spp., com-
prising S. lewini, S. mokarran and S. zygaena).
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
The source code used to undertake analyses and to prepare figures, in addi-
tion to the derived data underlying Fig. 2 maps (shark relative spatial density, 
longline-fishing effort and shark–longline-fishing overlap and FEI) and Fig. 3 
plots (spatial overlap and FEI) is freely available on GitHub (https://github.com/
GlobalSharkMovement/GlobalSpatialRisk). 
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Extended Data Fig. 1 | The locations of shark tag deployment sites in 
relation to shark space-use hotspots, ocean currents, physical features 
and fishing areas. a, Red circles denote the locations in which satellite 
transmitters were attached and sharks released, and blue squares in the 
eastern Pacific Ocean denote the annual median deployment locations of 
tags by the TOPP program11. Shark space-use hotspots are shown as the 
75th (blue dotted lines) and 90th percentiles (red dotted lines) of the mean 

monthly relative density of estimated shark locations within 1° × 1° grid 
cells given in Fig. 2a. b, c, Schematic maps of major ocean currents (b) and 
physical features overlaid on FAO fishing areas (c). Coloured arrows in b  
denote the thermal regime of currents, with warmer colours indicating 
higher water temperatures. CGFZ, Charlie Gibbs Fracture Zone; GBR, 
Great Barrier Reef; PNG, Papua New Guinea.
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Extended Data Fig. 2 | Spatial distribution of fishing vessels and overlap 
with sharks. a, Distribution of the fishing effort of AIS-tracked vessels 
(mean annual days spent per grid cell) between 2012 and 2016 (Methods). 
b, Distribution of the mean monthly overlap and level of the fishing effort 
for all vessels (in days) to which sharks were exposed in overlapping areas, 
for all species, within 1° × 1° grid cells (Methods). Spatial overlap hotspots 
were defined as 1° × 1° grid cells with ≥75th percentile of mean FEI. Note 
that the overlap pattern of sharks and all mapped AIS-equipped fishing 

vessels is similar to that determined for sharks and longline-fishing vessels 
in Fig. 2c. c, Distribution of the fishing effort of AIS-equipped purse-seine 
vessels, using mean annual days spent per grid cell between 2012 and 
2016 (Methods). d, Distribution of the mean monthly overlap and level of 
fishing effort of purse-seine vessel (in days) to which sharks were exposed 
in overlapping areas, for all species, within 1° × 1° grid cells (Methods). 
Spatial overlap hotspots were defined as 1° × 1° grid cells with ≥75th 
percentile of mean FEI.
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Extended Data Fig. 3 | Environmental modelling results. Estimated 
relationships between mean monthly relative density of all sharks (top) 
and fishing effort of all AIS-equipped fishing vessels (middle) and 
longline-fishing vessels only (bottom), with all environmental variables in 

the highest-ranked model (model 1) of the GAM tested. The third column 
shows the interaction results between the two variables described in the 
first and second columns. Asterisks indicate the significance level for each 
smooth term included in the GAM; ***P < 0.001.
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Extended Data Fig. 4 | Effect of grid-cell size on risk-exposure patterns 
of sharks to longline fisheries. a–d, North Atlantic Ocean (a), east 
Pacific Ocean (b), southwest Indian Ocean (c) and Oceania (d). Note that, 
regardless of the grid-cell size at which the individual-species mean spatial 
overlap and FEI were calculated, the species that occur in the highest-
(red) and the lowest-risk zones (green) remain notably conserved, which 
indicates a general pattern that is not dependent on the scale at which 

these data were analysed. Shark-species identification codes corresponding 
to marker colours are given in Fig. 3. In addition, for the North Atlantic (a),  
hammerhead sharks (Sphyrna spp.) are represented by a black circle and 
oceanic whitetip sharks (C. longimanus) by a light blue circle; for the 
eastern Pacific Ocean (b), the salmon shark (L. ditropis) is represented by 
a light orange circle. Error bars are ± 1 s.d. An additional comparison of 
2° × 2° with 1° × 1° grid-cell size is given in Supplementary Fig. 4.
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Extended Data Fig. 5 | Relationship between shark landings by  
fisheries in the North Atlantic Ocean, and shark density–longline  
FEI. Plot showing shark landings from the North Atlantic Ocean  
(mean, 2007−2016), extracted from the FAO total-capture production 
database, was dependent upon the longline-fishing effort in the North 
Atlantic Ocean, as estimated with the individual-species FEI (70% of 
sharks tracked, 2007–2017; AIS data, 2012−2016) (Methods).  

Using linear regression, we tested the null hypothesis (H0) that β = 0 
after normalizing landings (in metric tonnes) by log-transformation 
and for median FEI per species. Regression analysis gave the equation: 
log(landings) = 1.364 + 8,732 FEI, with a regression coefficient (b)  
standard error of 3,369. We computed r2 = 0.45, F = 6.72 and 
F0.05(1),1,7 = 5.59, therefore rejecting H0 at the 5% level of significance  
with P < 0.05.
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Extended Data Fig. 6 | Relative density and spatial overlap distributions 
for the five most data-rich individual shark species that occur in 
multiple oceans. a–e, Mean monthly relative density of shark species 
(left) tracked in 2002–2017 in comparison with species-mean FEI per grid 

cell (right) for the 5 most data-rich species or taxa groups that occur in 
multiple oceans: blue shark (a), shortfin mako shark (b), tiger shark (c), 
whale shark (d) and white shark (e). Red boxes denote areas shown in 
Fig. 3. Shark images created by M. Dando.
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Extended Data Fig. 7 | Relative density and spatial overlap distributions 
for the sixth to tenth most data-rich individual shark species that occur 
in multiple oceans. Mean monthly relative density of shark species (left) 
tracked in 2002–2017 in comparison with species-mean FEI per grid cell 
(right) for the sixth to tenth most data-rich species or taxa groups that 

occur in multiple oceans: oceanic whitetip shark (a), porbeagle shark (b), 
silky shark (c), bull shark (d) and hammerhead sharks (d) (comprising 
the scalloped hammerhead shark, the great hammerhead shark and the 
smooth hammerhead shark). Shark images created by M. Dando. CLO, 
Carcharhinus longimanis; SPH, Sphyrna spp.
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Extended Data Fig. 8 | Between-years patterns in global spatial density 
of pelagic sharks. Mean monthly spatial density was calculated for each 
two-year period across species. We used consecutive two-year groups to 
reduce gaps in coverage. Note that there were broad-scale shark tracks in 
the east Pacific Ocean in all eight two-year periods (2002–2003 to  
2016–2017), in the North Atlantic Ocean between 2006–2007 and  

2016–2017, in the southwest Indian Ocean in 2010–2011 to 2014–2015, 
and in Oceania between 2004–2005 and 2014–2015. This indicates that 
temporal consistency of shark tracks was present within the ocean regions 
studied, which suggests that the spatial hotspots that we identified are 
more likely to be persistent between years.
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Extended Data Fig. 9 | Risk-exposure patterns of sharks from longline 
fisheries between 2012 and 2016. a–d, North Atlantic Ocean (a), east 
Pacific Ocean (b), southwest Indian Ocean (c) and Oceania (d). Note 
that species patterns of exposure to risk in highest-risk (red) and lowest-
risk (green) zones in the years 2012−2016, which matched shark density 
data with longline-fishing effort data from AIS-equipped vessels directly, 
were very similar to patterns found for shark density (2002−2017) and 
longline-fishing effort data from AIS-equipped vessels (species-mean 
FEI) (2012−2016) (shown in Fig. 3), which indicates that there was no 
important effect of temporally mismatched datasets on the results. LDI, 
L. ditropis.
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Extended Data Fig. 10 | Seasonal shifts in sharks, longline-fishing 
vessels and patterns of overlap with fishing effort. a–h, Mean quarterly 
relative spatial density of sharks (left), longline-fishing effort (in days) 
(middle) and mean FEI per grid cell (the fishing effort to which sharks 
were exposed in overlapped areas) (right) for blue sharks in the  

North Atlantic Ocean in December–February (a), March–May (b),  
June–August (c) and September–November (d), and for shortfin mako 
sharks in the North Atlantic Ocean in December–February (e),  
March–May (f), June–August (g) and September–November (h).
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Shark satellite tracking: Raw location data from pop-off satellite archival transmitters (PSATs) processed after ARGOS satellite acquisition 
using tag manufacturers custom software (Wildlife Computers; Microwave Telemetry; Desert Star Systems) to calculate latitude and 
longitude. Raw positions processed using a UKFSST state space model (UKFSST R package). Raw ARGOS tag locations after satellite 
acquisition were processed with a speed filter (in R). For both tag types (PSAT and ARGOS), daily time series of locations estimated using 
a continuous time correlated random walk (CTCRW) Kalman filter (crawl R package). TOPP tag data was filtered with a Bayesian based 
state space model using WinBugs (for priors and MCMC sampling see Methods). 
Fishing vessel tracking: Processed data were acquired from the Global Fishing Watch. for code and processing details see ref. 19 in paper.

Data analysis R, Minitab v18 and ArcGIS

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The source code used to undertake analyses and to prepare figures, in addition to the derived data in spreadsheet form underlying Fig. 2 maps (shark relative 
spatial density; longline fishing effort; and shark– longline overlap and FEI) and Fig. 3 plots (spatial overlap and FEI) are freely available to download on GitHub 
(github.com/GlobalSharkMovement/GlobalSpatialRisk). Processed fishing vessel effort data are available to download at http://globalfishingwatch.org/datasets-
and-code/ 
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Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The study describes the distributions of satellite tracked pelagic sharks and fishing vessels across the global oceans and calculates the 
extent of overlap and fishing effort different shark species are exposed to in space and time. See Methods for time periods of data 
collection.

Research sample Movements of individual pelagic sharks were satellite tracked (n = 1804) from 23 threatened species in the Atlantic, Pacific and 
Indian oceans. Species details including number and locations of tags deployed on each species are given in the paper. Fishing vessels 
(n > 80,000) were tracked globally using the automatic identification system. These data were downloaded from Global Fishing 
Watch.

Sampling strategy Pelagic sharks were captured alive at sea with baited hooks or with purse seines prior to tagging and subsequent release. Some 
sharks were tagged while free swimming. Tags were fitted externally within a few minutes. Tagging was undertaken by 30 different 
research groups across many countries with tagging procedures approved by institutional ethical boards and conforming to national 
regulations. 

Data collection Each research group collected shark track data independently by download from the ARGOS satellite service provider.

Timing and spatial scale Pelagic sharks were tracked between 2002 and 2017. Details of tag deployments and tracking durations are detailed in the paper.

Data exclusions Poor quality data were reported for 123 tags (72 ARGOS and 51 PSATs) due to early tag failure, premature tag pop-off and/or a high 
percentage of locations estimated with high spatial error, e.g. raw computed geolocations over land, all of which resulted in poor 
state space model fits and hence short or unreliable track reconstructions. These data were excluded. 

Reproducibility No experiments as such were conducted, rather our data are based on satellite tracked movements of individual pelagic sharks and 
fishing vessels.

Randomization Randomization procedures were used and are fully described in the Methods and Supplementary Information files.

Blinding Blinding is not relevant to this type of study because data are based on movements of wild animals and fishing vessels.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Tags were deployed on pelagic sharks in the Atlantic, Pacific and Indian Oceans under a range of conditions.

Location Locations of tagging and subsequent tracks of sharks are detailed in the paper (Fig. 1; Extended Data Fig. 1).

Access and import/export No collections or import or export of samples was undertaken.

Disturbance Disturbance to individual shark behaviour was minimised through completion of tagging procedures within a few minutes if 
captured, or during free swimming. All procedures were approved by institutional and national ethical review committees.
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Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals N/A

Wild animals Satellite tags were fitted to individuals from 23 species of pelagic shark when captured or free swimming. Detailed information is 
provided in the Methods. All captured sharks were released after tag attachment. None were killed as part of the study. Tag 
release locations are given in Extended Data Fig. 1.

Field-collected samples N/A
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